Osteoblast Progenitor Cell Responses to Characterized Titanium Surfaces in the Presence of Bone Morphogenetic Protein–Atelopeptide Type I Collagen IN VITRO

1999 ◽  
Vol 25 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Joo L. Ong ◽  
Eric G. Bess ◽  
Kazuhisa Bessho
2003 ◽  
Vol 82 (1) ◽  
pp. 23-27 ◽  
Author(s):  
M. Zhao ◽  
J.E. Berry ◽  
M.J. Somerman

As an approach for improving the outcome and predictability of periodontal regenerative therapies, we have focused on determining the responses of cells within the local environment to putative regenerative factors. This study examined the effects of bone morphogenetic protein-2 (BMP-2) on murine cementoblasts in vitro. Northern blot analysis indicated that BMP-2 decreased mRNA levels of bone sialoprotein and type I collagen dose-dependently (10–300 ng/mL). At low doses, up to 100 ng/mL, BMP-2 had no effect on transcripts for osteocalcin and osteopontin, whereas at 300 ng/mL, BMP-2 greatly increased expression of these two genes. BMP-2 also inhibited cementoblast-mediated mineral nodule formation in a dose-dependent manner (inhibition was noted at 10 ng/mL). Noggin reversed the effects of BMP-2 on gene expression and on mineralization. These findings reflect the diverse responses of periodontal cells to BMP-2 and highlight the need to consider the complexity of factors involved in designing predictable regenerative therapies.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Shreyas Bhave ◽  
Michele Esposito ◽  
Lija Swain ◽  
Xiaoying QIAO ◽  
Gregory Martin ◽  
...  

Myocardial infarction (MI) is a major cause of heart failure (HF). HF is associated with adverse cardiac remodeling that is primarily driven by Transforming growth factor beta (TGFb1) mediated fibrosis and myocyte hypertrophy. We previously reported that loss of bone morphogenetic protein 9 (BMP9) promotes cardiac fibrosis in pressure-overload induced HF. No studies have explored a role for BMP9 in post MI cardiac remodeling. We hypothesize that loss of BMP9 may promote cardiac healing by stabilizing LV scar formation. To test this hypothesis, we subjected whole body BMP9 knockout (-/-) mice to left coronary artery ligation for two weeks followed by PV loop analysis and studied indices of cardiac remodeling. Compared to wild type (WT) controls BMP9-/- mice had significantly lower survival (83% vs 61%, p<0.001, respectively) with a higher rate of cardiac rupture(15% vs 90%). Compared to WT controls, surviving BMP9-/- mice had higher LVEDP, reduced LV dP/dt, and higher lung weight. Compared to WT mice, BMP9-/- mice had significantly higher levels of Type I collagen (2 fold p<0.05). Compared to WT mice, BMP9-/- mice had increased matrix metalloproteinases (MMP)-2 and MMP-9 (2.5 fold p<0.05) activity levels in the LV. Treatment of cultured primary human cardiac fibroblasts with recombinant BMP9 attenuated TGFb1-mediated Type I collagen and MMP-9 protein expression. To assess collagen content and cross-linking, two-photon excitation fluorescence imaging was performed and identified an increase in collagen abundance, but a trend towards lower collagen cross-linking in the LV of BMP9-/- mice compared to WT mice 2 weeks after MI. Our central finding is that loss of BMP9 is associated with reduced survival, increased propensity towards cardiac rupture, and increased LV collagen abundance, but reduced collagen integrity in a murine model of acute MI. These identify a potentially important functional role for BMP9 in post-infarct cardiac remodeling.


2017 ◽  
Vol 14 (135) ◽  
pp. 20170580 ◽  
Author(s):  
Salma Ayoub ◽  
Chung-Hao Lee ◽  
Kathryn H. Driesbaugh ◽  
Wanda Anselmo ◽  
Connor T. Hughes ◽  
...  

Mechanical stress is one of the major aetiological factors underlying soft-tissue remodelling, especially for the mitral valve (MV). It has been hypothesized that altered MV tissue stress states lead to deviations from cellular homeostasis, resulting in subsequent cellular activation and extracellular matrix (ECM) remodelling. However, a quantitative link between alterations in the organ-level in vivo state and in vitro- based mechanobiology studies has yet to be made. We thus developed an integrated experimental–computational approach to elucidate MV tissue and interstitial cell responses to varying tissue strain levels. Comprehensive results at different length scales revealed that normal responses are observed only within a defined range of tissue deformations, whereas deformations outside of this range lead to hypo- and hyper-synthetic responses, evidenced by changes in α-smooth muscle actin, type I collagen, and other ECM and cell adhesion molecule regulation. We identified MV interstitial cell deformation as a key player in leaflet tissue homeostatic regulation and, as such, used it as the metric that makes the critical link between in vitro responses to simulated equivalent in vivo behaviour. Results indicated that cell responses have a delimited range of in vivo deformations that maintain a homeostatic response, suggesting that deviations from this range may lead to deleterious tissue remodelling and failure.


2020 ◽  
Vol 133 (23) ◽  
pp. jcs249094 ◽  
Author(s):  
Shikha Chawla ◽  
Majoska H. M. Berkelaar ◽  
Boris Dasen ◽  
Christine Halleux ◽  
Sabine Guth-Gundel ◽  
...  

ABSTRACTBone morphogenetic protein (BMP) signalling plays a significant role during embryonic cartilage development and has been associated with osteoarthritis (OA) pathogenesis, being in both cases involved in triggering hypertrophy. Inspired by recent findings that BMP inhibition counteracts hypertrophic differentiation of human mesenchymal progenitors, we hypothesized that selective inhibition of BMP signalling would mitigate hypertrophic features in OA cartilage. First, a 3D in vitro OA micro-cartilage model was established using minimally expanded OA chondrocytes that was reproducibly able to capture OA-like hypertrophic features. BMP signalling was then restricted by means of two BMP receptor type I inhibitors, resulting in reduction of OA hypertrophic traits while maintaining synthesis of cartilage extracellular matrix. Our findings open potential pharmacological strategies for counteracting cartilage hypertrophy in OA and support the broader perspective that key signalling pathways known from developmental processes can guide the understanding, and possibly the mitigation, of adult pathological features.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Fu-Yuan Teng ◽  
Wen-Cheng Chen ◽  
Yin-Lai Wang ◽  
Chun-Cheng Hung ◽  
Chun-Chieh Tseng

This study designed a biomimetic implant for reducing healing time and achieving early osseointegration to create an active surface. Bone morphogenetic protein-2 (BMP-2) is a strong regulator protein in osteogenic pathways. Due to hardly maintaining BMP-2 biological function and specificity, BMP-2 efficient delivery on implant surfaces is the main challenge for the clinic application. In this study, a novel method for synthesizing functionalized silane film for superior modification with BMP-2 on titanium surfaces is proposed. Three groups were compared with and without BMP-2 on modified titanium surfaces in vitro and in vivo: mechanical grinding; electrochemical modification through potentiostatic anodization (ECH); and sandblasting, alkali heating, and etching (SMART). Cell tests indicated that the ECH and SMART groups with BMP-2 markedly promoted D1 cell activity and differentiation compared with the groups without BMP-2. Moreover, the SMART group with a BMP-2 surface markedly promoted early alkaline phosphatase expression in the D1 cells compared with the other surface groups. Compared with these groups in vivo, SMART silaning with BMP-2 showed superior bone quality and created contact areas between implant and surrounding bones. The SMART group with BMP-2 could promote cell mineralization in vitro and osseointegration in vivo, indicating potential clinical use.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yangyang Li ◽  
Yongfeng Zhang ◽  
Weiqi Meng ◽  
Yutong Li ◽  
Tao Huang ◽  
...  

Yishen Bugu Ye (YSBGY), a traditional Chinese medicine comprising 12 types of medicinal herbs, is often prescribed in China to increase bone strength. In this study, the antiosteoporotic effects of YSBGY were investigated in C57BL/6 mice afflicted with dexamethasone- (Dex-) induced osteoporosis (OP). The results showed that YSBGY reduced the interstitial edema in the liver and kidney of mice with Dex-induced OP. It also increased the number of trabecular bone elements and chondrocytes in the femur, promoted cortical bone thickness and trabecular bone density, and modulated the OP-related indexes in the femur and tibia of OP mice. It also increased the serum concentrations of type I collagen, osteocalcin, osteopontin, bone morphogenetic protein-2, bone morphogenetic protein receptor type 2, C-terminal telopeptide of type I collagen, and runt-related transcription factor-2 and reduced those of tartrate-resistant acid phosphatase 5 and nuclear factor of activated T cells in these mice, suggesting that it improved osteoblast differentiation and suppressed osteoclast differentiation. The anti-inflammatory effect of YSBGY was confirmed by the increase in the serum concentrations of interleukin- (IL-) 33 and the decrease in concentrations of IL-1, IL-7, and tumor necrosis factor-α in OP mice. Furthermore, YSBGY enhanced the serum concentrations of superoxide dismutase and catalase in these mice, indicating that it also exerted antioxidative effects. This is the first study to confirm the antiosteoporotic effects of YSBGY in mice with Dex-induced OP, and it showed that these effects may be related to the YSBGY-induced modulation of the osteoblast/osteoclast balance and serum concentrations of inflammatory factors. These results provide experimental evidence supporting the use of YSBGY for supporting bone formation in the clinical setting.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1273 ◽  
Author(s):  
Christopher Differ ◽  
Franka Klatte-Schulz ◽  
Nicole Bormann ◽  
Susann Minkwitz ◽  
Petra Knaus ◽  
...  

The growth factor bone morphogenetic protein 2 (BMP2) plays an important role in bone development and repair. Despite the positive effects of BMP2 in fracture healing, its use is associated with negative side effects and poor cost effectiveness, partly due to the large amounts of BMP2 applied. Therefore, reduction of BMP2 amounts while maintaining efficacy is of clinical importance. As nitric oxide (NO) signaling plays a role in bone fracture healing and an association with the BMP2 pathway has been indicated, this study aimed to investigate the relationship of BMP2 and NO pathways and whether NO can enhance BMP2-induced signaling and osteogenic abilities in vitro. To achieve this, the stable BMP reporter cell line C2C12BRELuc was used to quantify BMP signaling, and alkaline phosphatase (ALP) activity and gene expression were used to quantify osteogenic potency. C2C12BRELuc cells were treated with recombinant BMP2 in combination with NO donors and substrate (Deta NONOate, SNAP & L-Arginine), NOS inhibitor (LNAME), soluble guanylyl cyclase (sGC) inhibitor (LY83583) and activator (YC-1), BMP type-I receptor inhibitor (LDN-193189), or protein kinase A (PKA) inhibitor (H89). It was found that the NOS enzyme, direct NO application, and sGC enhanced BMP2 signaling and improved BMP2 induced osteogenic activity. The application of a PKA inhibitor demonstrated that BMP2 signaling is enhanced by the NO pathway via PKA, underlining the capability of BMP2 in activating the NO pathway. Collectively, this study proves the ability of the NO pathway to enhance BMP2 signaling.


2013 ◽  
Vol 210 (12) ◽  
pp. 2597-2610 ◽  
Author(s):  
Nighat Yasmin ◽  
Thomas Bauer ◽  
Madhura Modak ◽  
Karin Wagner ◽  
Christopher Schuster ◽  
...  

Human Langerhans cell (LC) precursors populate the epidermis early during prenatal development and thereafter undergo massive proliferation. The prototypic antiproliferative cytokine TGF-β1 is required for LC differentiation from human CD34+ hematopoietic progenitor cells and blood monocytes in vitro. Similarly, TGF-β1 deficiency results in LC loss in vivo. However, immunohistology studies revealed that human LC niches in early prenatal epidermis and adult basal (germinal) keratinocyte layers lack detectable TGF-β1. Here we demonstrated that these LC niches express high levels of bone morphogenetic protein 7 (BMP7) and that Bmp7-deficient mice exhibit substantially diminished LC numbers, with the remaining cells appearing less dendritic. BMP7 induces LC differentiation and proliferation by activating the BMP type-I receptor ALK3 in the absence of canonical TGF-β1–ALK5 signaling. Conversely, TGF-β1–induced in vitro LC differentiation is mediated via ALK3; however, co-induction of ALK5 diminished TGF-β1–driven LC generation. Therefore, selective ALK3 signaling by BMP7 promotes high LC yields. Within epidermis, BMP7 shows an inverse expression pattern relative to TGF-β1, the latter induced in suprabasal layers and up-regulated in outer layers. We observed that TGF-β1 inhibits microbial activation of BMP7-generated LCs. Therefore, TGF-β1 in suprabasal/outer epidermal layers might inhibit LC activation, resulting in LC network maintenance.


Sign in / Sign up

Export Citation Format

Share Document